3.708 \(\int \frac{\sec ^4(c+d x)}{(a+b \sec (c+d x))^{5/3}} \, dx\)

Optimal. Leaf size=378 \[ -\frac{a \left (9 a^2-7 b^2\right ) \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)} F_1\left (\frac{1}{2};\frac{1}{2},-\frac{1}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{2 \sqrt{2} b^3 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)+1} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}}+\frac{\left (-10 a^2 b^2+9 a^4-b^4\right ) \tan (c+d x) \left (\frac{a+b \sec (c+d x)}{a+b}\right )^{2/3} F_1\left (\frac{1}{2};\frac{1}{2},\frac{2}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{2 \sqrt{2} b^3 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)+1} (a+b \sec (c+d x))^{2/3}}-\frac{3 a^2 \tan (c+d x) \sec (c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{2/3}}+\frac{3 \left (3 a^2-b^2\right ) \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)}}{4 b^2 d \left (a^2-b^2\right )} \]

[Out]

(-3*a^2*Sec[c + d*x]*Tan[c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(2/3)) + (3*(3*a^2 - b^2)*(a + b*Se
c[c + d*x])^(1/3)*Tan[c + d*x])/(4*b^2*(a^2 - b^2)*d) - (a*(9*a^2 - 7*b^2)*AppellF1[1/2, 1/2, -1/3, 3/2, (1 -
Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*Sec[c + d*x])^(1/3)*Tan[c + d*x])/(2*Sqrt[2]*b^3*(a^2
- b^2)*d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3)) + ((9*a^4 - 10*a^2*b^2 - b^4)*AppellF1[1
/2, 1/2, 2/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*((a + b*Sec[c + d*x])/(a + b))^(2/3)*
Tan[c + d*x])/(2*Sqrt[2]*b^3*(a^2 - b^2)*d*Sqrt[1 + Sec[c + d*x]]*(a + b*Sec[c + d*x])^(2/3))

________________________________________________________________________________________

Rubi [A]  time = 0.560408, antiderivative size = 378, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3845, 4082, 4007, 3834, 139, 138} \[ -\frac{a \left (9 a^2-7 b^2\right ) \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)} F_1\left (\frac{1}{2};\frac{1}{2},-\frac{1}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{2 \sqrt{2} b^3 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)+1} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}}+\frac{\left (-10 a^2 b^2+9 a^4-b^4\right ) \tan (c+d x) \left (\frac{a+b \sec (c+d x)}{a+b}\right )^{2/3} F_1\left (\frac{1}{2};\frac{1}{2},\frac{2}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right )}{2 \sqrt{2} b^3 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)+1} (a+b \sec (c+d x))^{2/3}}-\frac{3 a^2 \tan (c+d x) \sec (c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{2/3}}+\frac{3 \left (3 a^2-b^2\right ) \tan (c+d x) \sqrt [3]{a+b \sec (c+d x)}}{4 b^2 d \left (a^2-b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/(a + b*Sec[c + d*x])^(5/3),x]

[Out]

(-3*a^2*Sec[c + d*x]*Tan[c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(2/3)) + (3*(3*a^2 - b^2)*(a + b*Se
c[c + d*x])^(1/3)*Tan[c + d*x])/(4*b^2*(a^2 - b^2)*d) - (a*(9*a^2 - 7*b^2)*AppellF1[1/2, 1/2, -1/3, 3/2, (1 -
Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*(a + b*Sec[c + d*x])^(1/3)*Tan[c + d*x])/(2*Sqrt[2]*b^3*(a^2
- b^2)*d*Sqrt[1 + Sec[c + d*x]]*((a + b*Sec[c + d*x])/(a + b))^(1/3)) + ((9*a^4 - 10*a^2*b^2 - b^4)*AppellF1[1
/2, 1/2, 2/3, 3/2, (1 - Sec[c + d*x])/2, (b*(1 - Sec[c + d*x]))/(a + b)]*((a + b*Sec[c + d*x])/(a + b))^(2/3)*
Tan[c + d*x])/(2*Sqrt[2]*b^3*(a^2 - b^2)*d*Sqrt[1 + Sec[c + d*x]]*(a + b*Sec[c + d*x])^(2/3))

Rule 3845

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(a^2*
d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3))/(b*f*(m + 1)*(a^2 - b^2)), x] + Dist[d
^3/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*b*(
m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && N
eQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))

Rule 4082

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m
+ 2)), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*B*
(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4007

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Dist[(A*b - a*B)/b, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] + Dist[B/b, Int[Csc[e + f*x
]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^
2, 0]

Rule 3834

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[Cot[e + f*x]/(f*Sqr
t[1 + Csc[e + f*x]]*Sqrt[1 - Csc[e + f*x]]), Subst[Int[(a + b*x)^m/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Csc[e + f
*x]], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] &&  !IntegerQ[2*m]

Rule 139

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*((b*(e + f*x))/(b*e - a*f))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
((b*e)/(b*e - a*f) + (b*f*x)/(b*e - a*f))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 138

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f))])/(b*(m + 1
)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rubi steps

\begin{align*} \int \frac{\sec ^4(c+d x)}{(a+b \sec (c+d x))^{5/3}} \, dx &=-\frac{3 a^2 \sec (c+d x) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{2/3}}-\frac{3 \int \frac{\sec (c+d x) \left (a^2-\frac{2}{3} a b \sec (c+d x)-\frac{2}{3} \left (3 a^2-b^2\right ) \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{2/3}} \, dx}{2 b \left (a^2-b^2\right )}\\ &=-\frac{3 a^2 \sec (c+d x) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{2/3}}+\frac{3 \left (3 a^2-b^2\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{4 b^2 \left (a^2-b^2\right ) d}-\frac{9 \int \frac{\sec (c+d x) \left (\frac{2}{9} b \left (3 a^2+b^2\right )+\frac{2}{9} a \left (9 a^2-7 b^2\right ) \sec (c+d x)\right )}{(a+b \sec (c+d x))^{2/3}} \, dx}{8 b^2 \left (a^2-b^2\right )}\\ &=-\frac{3 a^2 \sec (c+d x) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{2/3}}+\frac{3 \left (3 a^2-b^2\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{4 b^2 \left (a^2-b^2\right ) d}-\frac{\left (a \left (9 a^2-7 b^2\right )\right ) \int \sec (c+d x) \sqrt [3]{a+b \sec (c+d x)} \, dx}{4 b^3 \left (a^2-b^2\right )}+\frac{\left (9 a^4-10 a^2 b^2-b^4\right ) \int \frac{\sec (c+d x)}{(a+b \sec (c+d x))^{2/3}} \, dx}{4 b^3 \left (a^2-b^2\right )}\\ &=-\frac{3 a^2 \sec (c+d x) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{2/3}}+\frac{3 \left (3 a^2-b^2\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{4 b^2 \left (a^2-b^2\right ) d}+\frac{\left (a \left (9 a^2-7 b^2\right ) \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt [3]{a+b x}}{\sqrt{1-x} \sqrt{1+x}} \, dx,x,\sec (c+d x)\right )}{4 b^3 \left (a^2-b^2\right ) d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)}}-\frac{\left (\left (9 a^4-10 a^2 b^2-b^4\right ) \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} \sqrt{1+x} (a+b x)^{2/3}} \, dx,x,\sec (c+d x)\right )}{4 b^3 \left (a^2-b^2\right ) d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)}}\\ &=-\frac{3 a^2 \sec (c+d x) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{2/3}}+\frac{3 \left (3 a^2-b^2\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{4 b^2 \left (a^2-b^2\right ) d}+\frac{\left (a \left (9 a^2-7 b^2\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt [3]{-\frac{a}{-a-b}-\frac{b x}{-a-b}}}{\sqrt{1-x} \sqrt{1+x}} \, dx,x,\sec (c+d x)\right )}{4 b^3 \left (a^2-b^2\right ) d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)} \sqrt [3]{-\frac{a+b \sec (c+d x)}{-a-b}}}-\frac{\left (\left (9 a^4-10 a^2 b^2-b^4\right ) \left (-\frac{a+b \sec (c+d x)}{-a-b}\right )^{2/3} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} \sqrt{1+x} \left (-\frac{a}{-a-b}-\frac{b x}{-a-b}\right )^{2/3}} \, dx,x,\sec (c+d x)\right )}{4 b^3 \left (a^2-b^2\right ) d \sqrt{1-\sec (c+d x)} \sqrt{1+\sec (c+d x)} (a+b \sec (c+d x))^{2/3}}\\ &=-\frac{3 a^2 \sec (c+d x) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{2/3}}+\frac{3 \left (3 a^2-b^2\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{4 b^2 \left (a^2-b^2\right ) d}-\frac{a \left (9 a^2-7 b^2\right ) F_1\left (\frac{1}{2};\frac{1}{2},-\frac{1}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{a+b \sec (c+d x)} \tan (c+d x)}{2 \sqrt{2} b^3 \left (a^2-b^2\right ) d \sqrt{1+\sec (c+d x)} \sqrt [3]{\frac{a+b \sec (c+d x)}{a+b}}}+\frac{\left (9 a^4-10 a^2 b^2-b^4\right ) F_1\left (\frac{1}{2};\frac{1}{2},\frac{2}{3};\frac{3}{2};\frac{1}{2} (1-\sec (c+d x)),\frac{b (1-\sec (c+d x))}{a+b}\right ) \left (\frac{a+b \sec (c+d x)}{a+b}\right )^{2/3} \tan (c+d x)}{2 \sqrt{2} b^3 \left (a^2-b^2\right ) d \sqrt{1+\sec (c+d x)} (a+b \sec (c+d x))^{2/3}}\\ \end{align*}

Mathematica [B]  time = 26.4083, size = 21987, normalized size = 58.17 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^4/(a + b*Sec[c + d*x])^(5/3),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [F]  time = 0.124, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \sec \left ( dx+c \right ) \right ) ^{4} \left ( a+b\sec \left ( dx+c \right ) \right ) ^{-{\frac{5}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a+b*sec(d*x+c))^(5/3),x)

[Out]

int(sec(d*x+c)^4/(a+b*sec(d*x+c))^(5/3),x)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^(5/3),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{1}{3}} \sec \left (d x + c\right )^{4}}{b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^(5/3),x, algorithm="fricas")

[Out]

integral((b*sec(d*x + c) + a)^(1/3)*sec(d*x + c)^4/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{4}{\left (c + d x \right )}}{\left (a + b \sec{\left (c + d x \right )}\right )^{\frac{5}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a+b*sec(d*x+c))**(5/3),x)

[Out]

Integral(sec(c + d*x)**4/(a + b*sec(c + d*x))**(5/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{4}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^(5/3),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^4/(b*sec(d*x + c) + a)^(5/3), x)